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Instructions to the Candidates :  
1)There are 3 sections in the question paper. Write each section on separate page. 
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3)Figures to the right indicate full marks. 
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SECTION-A 
 

Q.1)Attempt any five of the following.                                             [Marks 10] 

       a) Define  i) Tautology        ii) Contradiction. 

       b) Find the truth value of the statement ∀x Ǝy , y < x2. 

       c) Show that card (ℤ) = card (ℕ). 

       d) Define Limit of a sequence. 

       e) Show that {√𝑛 + 1 −  √𝑛  }
𝑛=1

𝑛= ∞
 is convergent. 

       f) Show that the sequence  {
1

1+ 𝑛2
}

𝑛=1

𝑛= ∞
 is monotonic.     

       g) Define absolute convergence of the series  ∑ an
n= ∞
n=1 . 

 

 

SECTION-B 
 

Q.2)Attempt any three of the following.                                          [Marks 15] 

       a) Prove that   i) A → B ≡  ~ (A ʌ (~ B))    ii) A v B ≡ ~ ((~ A ) ʌ (~ B)). 

       b) Show that the set of all ordered pairs of positive integers is countable. 

       c) Prove that convergent sequence of real numbers is bounded. 

       d) Find the limit superior and the limit inferior for the following sequences 

            i) 1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3 , ………………………. 

            ii) {𝑠𝑖𝑛 
𝑛𝜋

2
}

𝑛=1

𝑛= ∞
 .                
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     e) If ∑ 𝑎𝑛
𝑛= ∞
𝑛=1  converges to A and ∑ 𝑏𝑛

𝑛= ∞
𝑛=1   converges to B then show that  

         ∑ (𝑎𝑛 +  𝑏𝑛
𝑛= ∞
𝑛=1 ) converges to A + B 

 

 

SECTION-C 
 

Q.3)Attempt any one of the following.                                             [Marks 10] 

        a) i)Prove that Cauchy sequence of real numbers is convergent in ℝ. 

            ii) Show that the series∑
1

𝑛

𝑛= ∞
𝑖=1  is divergent. 

        b) i) Prove that if  {𝑠𝑛}𝑛=1
𝑛= ∞ converges to 1 then {√𝑠𝑛 }

𝑛=1

𝑛= ∞
converges to 1 

            ii) If  0 < x < 1  then show that ∑ xnn= ∞
n=0  converge to 

1

1−x
 . 
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