

Progressive Education Society's

Modern College of Arts, Science & Commerce Ganeshkhind, **Pune – 16(Autonomous)**

End Semester Examination: October/November 2024 Faculty: Science and Technology (2024-2025)

Program: BScGen03 **Semester: V** SET : A

Program (Specific): BSc (Regular) **Course Type: DSEC/DSC** Class: T.Y.B.Sc. (Mathematics) Max. Marks: 35

Name of the Course: Real Analysis – I Course Code: 24-MT-352

Time: 2 Hrs. Paper No.: II

Instructions to the Candidates:

1) There are 3 sections in the question paper. Write each section on separate page.

- 2) All Sections are compulsory.
- 3) Figures to the right indicate full marks.
- 4)Draw a well labelled diagram whenever necessary.

SECTION-A

Q.1)Attempt any five of the following.

[Marks 10]

- a) Define i) Tautology ii) Contradiction.
- **b)** Find the truth value of the statement $\forall x \exists y, y < x^2$.
- c) Show that card (\mathbb{Z}) = card (\mathbb{N}).
- **d**) Define Limit of a sequence.
- e) Show that $\{\sqrt{n+1} \sqrt{n} \}_{n=1}^{n=\infty}$ is convergent. f) Show that the sequence $\{\frac{1}{1+n^2}\}_{n=1}^{n=\infty}$ is monotonic.
- g) Define absolute convergence of the series $\sum_{n=1}^{n=\infty} a_n$.

SECTION-B

Q.2) Attempt any three of the following.

[Marks 15]

- a) Prove that i) $A \to B \equiv \sim (A \land (\sim B))$ ii) $A \lor B \equiv \sim ((\sim A) \land (\sim B))$.
- **b)** Show that the set of all ordered pairs of positive integers is countable.
- c) Prove that convergent sequence of real numbers is bounded.
- **d)** Find the limit superior and the limit inferior for the following sequences

ii)
$$\left\{\sin\frac{n\pi}{2}\right\}_{n=1}^{n=\infty}$$
.

e) If $\sum_{n=1}^{n=\infty} a_n$ converges to A and $\sum_{n=1}^{n=\infty} b_n$ converges to B then show that $\sum_{n=1}^{n=\infty} (a_n + b_n)$ converges to A + B

SECTION-C

Q.3)Attempt any one of the following.

[Marks 10]

- a) i)Prove that Cauchy sequence of real numbers is convergent in \mathbb{R} .
 - ii) Show that the series $\sum_{i=1}^{n=\infty} \frac{1}{n}$ is divergent.
- **b**) i) Prove that if $\{s_n\}_{n=1}^{n=\infty}$ converges to 1 then $\{\sqrt{s_n}\}_{n=1}^{n=\infty}$ converges to 1
 - ii) If 0 < x < 1 then show that $\sum_{n=0}^{n=\infty} x^n$ converge to $\frac{1}{1-x}$.